OJEMDA + pLGG
About pLGG
pLGG is predominantly driven by genomic alterations in the MAPK pathway1
Activating BRAF alterations (fusions or mutations) are the most common oncogenic drivers of pLGG1
Up to
0%
of patients with pLGG are BRAF-altered2‑6
Incidence varies by pLGG subtype.
~0%
of these cases have BRAF fusions, primarily KIAA1549‑BRAF
Predominantly seen in pilocytic astrocytomas.
~0%
of these cases have BRAF point mutations, primarily BRAF V600E
May vary across pLGG subtypes.
Type I BRAF inhibitors only target BRAF point mutations7
- First-generation, BRAF-targeted therapies, also known as type I BRAF inhibitors, are designed to address only BRAF V600E point mutations
- Type I BRAF inhibitors cannot inhibit signaling from BRAF fusions and have been shown to increase signaling (paradoxical activation)
Not all BRAF inhibitors are designed to target both BRAF fusions and BRAF point mutations7
Mechanism of Action
OJEMDA is the first and only type II RAF inhibitor for BRAF fusions or rearrangements, or BRAF V600 mutations7,8
Unlike type I BRAF inhibitors, tovorafenib can inhibit signaling from BRAF fusions.7,8
Tovorafenib inhibits MAPK signaling without promoting tumor cell growth8
BRAF=v-Raf murine sarcoma viral oncogene homolog B1; ERK=extracellular signal-regulated kinase; MAPK=mitogen-activated protein kinase; MEK=mitogen-activated protein kinase kinase; pLGG=pediatric low-grade glioma; RAF=rapidly accelerated fibrosarcoma.
Discover clinically meaningful responses
Discover the study design
References
- 1. Kilburn LB, Khuong-Quang DA, Hansford JR, et al. The type II RAF inhibitor tovorafenib in relapsed/refractory pediatric low-grade glioma: the phase 2 FIREFLY-1 trial. Nat Med. 2024;30(1):207-217. doi:10.1038/s41591-023-02668-y
- 2. Faulkner C, Ellis HP, Shaw A, et al. BRAF fusion analysis in pilocytic astrocytomas: KIAA1549-BRAF 15-9 fusions are more frequent in the midline than within the cerebellum. J Neuropathol Exp Neurol. 2015;74(9):867-872. doi:10.1097/NEN.0000000000000226
- 3. Lassaletta A, Zapotocky M, Mistry M, et al. Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. J Clin Oncol. 2017;35(25):2934-2941. doi:10.1200/JCO.2016.71.8726
- 4. Penman CL, Faulkner C, Lowis SP, Kurian KM. Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Front Oncol. 2015;5:54. doi:10.3389/fonc.2015.00054
- 5. Packer RJ, Pfister S, Bouffet E, et al. Pediatric low-grade gliomas: implications of the biologic era. Neuro Oncol. 2017;19(6):750-761. doi:10.1093/neuonc/now209
- 6. Cohen AR. Brain tumors in children. N Engl J Med. 2022;386(20):1922-1931. doi:10.1056/NEJMra2116344
- 7. Yaeger R, Corcoran RB. Targeting alterations in the RAF-MEK pathway. Cancer Discov. 2019;9(3):329-341. doi:10.1158/2159-8290.CD-18-1321
- 8. OJEMDA™ [Package Insert]. Brisbane, CA: Day One Biopharmaceuticals, Inc.; 2024.